Statistics for Spatio Temporal Data

A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the ...

Author: Noel Cressie

Publisher: John Wiley & Sons

ISBN: 9781119243069

Category: Mathematics

Page: 624

View: 228

Download →

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Posted in:

Statistics for Spatio Temporal Data

However, at least in science-based, spatio-temporal hierarchical statistical modeling, at a given level of the hierarchy it is usually possible to distinguish between parameters and processes. A strength of the hierarchical approach is ...

Author: Noel Cressie

Publisher: John Wiley & Sons

ISBN: 9781119243045

Category: Mathematics

Page: 624

View: 454

Download →

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes,bridging classic ideas with modern hierarchical statisticalmodeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winnersof the 2011 PROSE Award in the Mathematics category, for thebook “Statistics for Spatio-Temporal Data” (2011),published by John Wiley and Sons. (The PROSE awards, forProfessional and Scholarly Excellence, are given by the Associationof American Publishers, the national trade association of the USbook publishing industry.) Statistics for Spatio-Temporal Data has now beenreprinted with small corrections to the text andthe bibliography. The overall content and pagination of thenew printing remains the same; the difference comes inthe form of corrections to typographical errors, editing ofincomplete and missing references, and some updated spatio-temporalinterpretations. From understanding environmental processes and climate trends todeveloping new technologies for mapping public-health data and thespread of invasive-species, there is a high demand for statisticalanalyses of data that take spatial, temporal, and spatio-temporalinformation into account. Statistics for Spatio-TemporalData presents a systematic approach to key quantitativetechniques that incorporate the latest advances in statisticalcomputing as well as hierarchical, particularly Bayesian,statistical modeling, with an emphasis on dynamical spatio-temporalmodels. Cressie and Wikle supply a unique presentation thatincorporates ideas from the areas of time series and spatialstatistics as well as stochastic processes. Beginning with separatetreatments of temporal data and spatial data, the book combinesthese concepts to discuss spatio-temporal statistical methods forunderstanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, includingvisualization, spectral analysis, empirical orthogonal functionanalysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging,and time series of spatial processes Development of hierarchical dynamical spatio-temporal models(DSTMs), with discussion of linear and nonlinear DSTMs andcomputational algorithms for their implementation Quantifying and exploring spatio-temporal variability inscientific applications, including case studies based on real-worldenvironmental data Throughout the book, interesting applications demonstrate therelevance of the presented concepts. Vivid, full-color graphicsemphasize the visual nature of the topic, and a related FTP sitecontains supplementary material. Statistics for Spatio-TemporalData is an excellent book for a graduate-level course onspatio-temporal statistics. It is also a valuable reference forresearchers and practitioners in the fields of applied mathematics,engineering, and the environmental and health sciences.
Posted in:

Spatio Temporal Statistics with R

As mentioned in Chapter 1, there is a connection between deep hierarchical statistical models (BHMs) and many of ... There is yet another parsimonious approach to nonlinear spatio-temporal modeling that is somewhat science-based and ...

Author: Christopher K. Wikle

Publisher: CRC Press

ISBN: 9780429649783

Category: Mathematics

Page: 380

View: 364

Download →

The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.
Posted in:

Science Based Spatiotemporal Statistics

This book provides an introduction to the theoretical development and practical methodology of the so-called science-based spatiotemporal statistics.

Author: Hwa-Lung Yu

Publisher: CRC Press

ISBN: 1482238039

Category:

Page: 350

View: 957

Download →

This book provides an introduction to the theoretical development and practical methodology of the so-called science-based spatiotemporal statistics. The book capitalizes on the significance of integrating different knowledge sources (physical, ecological, health, and social) into formal spatiotemporal statistics and provides an array of practical procedures for incorporating these sources into composite space-time analysis, modeling, and estimation/prediction.
Posted in:

Geospatial Analysis of Environmental Health

Thus, it is crucial for health agencies to improve their understanding of spatiotemporal PM2.5 exposure of people living in Taipei city. The Bayesian Maximum Entropy (BME) theory of spatiotemporal statistics and science-based mapping ...

Author: Juliana A. Maantay

Publisher: Springer Science & Business Media

ISBN: 9789400703292

Category: Medical

Page: 498

View: 242

Download →

This book focuses on a range of geospatial applications for environmental health research, including environmental justice issues, environmental health disparities, air and water contamination, and infectious diseases. Environmental health research is at an exciting point in its use of geotechnologies, and many researchers are working on innovative approaches. This book is a timely scholarly contribution in updating the key concepts and applications of using GIS and other geospatial methods for environmental health research. Each chapter contains original research which utilizes a geotechnical tool (Geographic Information Systems (GIS), remote sensing, GPS, etc.) to address an environmental health problem. The book is divided into three sections organized around the following themes: issues in GIS and environmental health research; using GIS to assess environmental health impacts; and geospatial methods for environmental health. Representing diverse case studies and geospatial methods, the book is likely to be of interest to researchers, practitioners and students across the geographic and environmental health sciences. The authors are leading researchers and practitioners in the field of GIS and environmental health.
Posted in:

Handbook of Environmental and Ecological Statistics

32.3.2.3 Space-Time Spectral Analysis As discussed briefly in Chapter 30, cross-spectral analysis can be extended to ... As such, many of the statistical models used to characterize oceanographic data and processes have been based on ...

Author: Alan E. Gelfand

Publisher: CRC Press

ISBN: 9781351648547

Category: Mathematics

Page: 854

View: 580

Download →

This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.
Posted in:

Spatio temporal Design

In Recent Advances in Statistics and Probability: Proceedings of the 4th International Meeting of Statistics in the Basque Country, San Sebastian, Spain, 4-7 August, 1992. VSP Intl Science, pp. 191-206. Miiller P 1999 Simulation-based ...

Author: Jorge Mateu

Publisher: John Wiley & Sons

ISBN: 9781118441886

Category: Mathematics

Page: 382

View: 401

Download →

A state-of-the-art presentation of optimum spatio-temporalsampling design - bridging classic ideas with modern statisticalmodeling concepts and the latest computational methods. Spatio-temporal Design presents a comprehensivestate-of-the-art presentation combining both classical and moderntreatments of network design and planning for spatial andspatio-temporal data acquisition. A common problem set isinterwoven throughout the chapters, providing various perspectivesto illustrate a complete insight to the problem at hand. Motivated by the high demand for statistical analysis of datathat takes spatial and spatio-temporal information into account,this book incorporates ideas from the areas of time series, spatialstatistics and stochastic processes, and combines them to discussoptimum spatio-temporal sampling design. Spatio-temporal Design: Advances in Efficient DataAcquisition: Provides an up-to-date account of how to collect space-timedata for monitoring, with a focus on statistical aspects and thelatest computational methods Discusses basic methods and distinguishes between design andmodel-based approaches to collecting space-time data. Features model-based frequentist design for univariate andmultivariate geostatistics, and second-phase spatial sampling. Integrates common data examples and case studies throughout thebook in order to demonstrate the different approaches and theirintegration. Includes real data sets, data generating mechanisms andsimulation scenarios. Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book forgraduate level students as well as a valuable reference forresearchers and practitioners in the fields of applied mathematics,engineering, and the environmental and health sciences.
Posted in:

Handbook of Discrete Valued Time Series

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):701–713. ... Proceedings of the National Academy of Sciences, ... A general science-based framework for dynamical spatiotemporal models.

Author: Richard A. Davis

Publisher: CRC Press

ISBN: 9781466577749

Category: Mathematics

Page: 484

View: 123

Download →

Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed ca
Posted in:

Temporal GIS

He is the author of three books : " Random Field Models in Earth Sciences " ( Academic Press ) , " Spatiotemporal Environmental ... His research interests include the use of statistics to study environmental data and health - related ...

Author: George Christakos

Publisher: Springer Science & Business Media

ISBN: 3540414762

Category: Mathematics

Page: 219

View: 437

Download →

CD-ROM contains: BMElib, a set of programs for spatiotemporal geostatistics in Temporal GIS written in MatLab (version 5.3 and later).
Posted in:

Integrative Problem Solving in a Time of Decadence

Spatiotemporal statistical analysis of influenza mortality risks in the state of California during the period 1997–2001. Journal of Stochastic Environmental Research and Risk Assessment. 22(1), 15–25. Chomsky, N. (1986).

Author: George Christakos

Publisher: Springer Science & Business Media

ISBN: 9789048198900

Category: Science

Page: 527

View: 801

Download →

Presents a unique study of Integrative Problem-Solving (IPS). The consideration of 'Decadence' is essential in the scientific study of environmental and other problems and their rigorous solution, because the broad context within which the problems emerge can affect their solution. Stochastic reasoning underlines the conceptual and methodological framework of IPS, and its formulation has a mathematical life of its own that accounts for the multidisciplinarity of real world problems, the multisourced uncertainties characterizing their solution, and the different thinking modes of the people involved. Only by interpolating between the full range of disciplines (including stochastic mathematics, physical science, neuropsychology, philosophy, and sociology) and the associated thinking modes can scientists arrive at a satisfactory account of problem-solving, and be able to distinguish between a technically complete problem-solution, and a solution that has social impact.
Posted in: